Building Blocks of Restoration:

PLANT BREEDING AND GENETICS

Bruce Coulman
University of Saskatchewan
Topics To Be Considered

• Perennial native grass species
• Genetic considerations
• Types of populations
• Native grass breeding
• Genetic diversity comparisons
GENOTYPE

• The genetic makeup of an organism or individual
• The inherited map that an individual carries in its genetic code
• We often refer to one’s genotype with regard to a particular gene of interest
• The genotype, and environmental effects, determine the phenotype of an individual – i.e. what it looks like
Genetic Considerations: Self-Pollinating Species

- Most of our crop species are predominantly self-pollinating
- Wild populations of these species are a mixture of mostly homozygous genotypes
 - May be highly variable
- Modern cultivars are composed of mostly one genotype
 - Small % of cross pollination results in a low % of heterozygous genotypes
 - Plants are identical in morphology and physiology
- Are some self-pollinating native grass species
 - eg. Elymus trachycaulus – slender wheatgrass
Genetic Considerations: Cross-Pollinating Species

• Most perennial grasses are cross-pollinated
• Individual plants within a population have different genotypes and many gene loci are heterozygous
 • Individual plants show variation in morphology and physiology
• Self-incompatibility is common
• Inbreeding depression occurs when selfed or closely related genotypes crossed
• Many grass species are polyploids – genetically complex
• Most populations show a high degree of genetic variation
Type of Populations of Perennial Native Grass Species

- Cultivars (Varieties)
 - Most intensively selected
- Ecological varieties
 - Also known as pre-variety germplasm, multi-site composites, ecovars™
 - Collections from wide area, little selection carried out
- Ecotypes
 - One or more collections from a geographic area
- Wild harvest
 - Seed collected from a specific location
Cultivars of Cross Pollinated Species

- Selected by plant breeders
- Selection usually done for specific characters
 - Forage yield, seed yield, forage quality, regrowth etc.
- Selection reduces genetic variation from wild populations
 - But cultivars are still genetically diverse
 - Must select a number of plants in cultivar formation to avoid inbreeding
- Cultivars are available for some native grass species
Initiative to develop Canadian adapted seed sources of native grass species: Ecological varieties

- Began in early 1990s

- Partners
 a) Ducks Unlimited Canada (DUC)
 b) Agriculture and Agri-Food Canada (AAFC)
 c) University of Manitoba
 d) University of Saskatchewan

- Goals
 a) To have adapted, genetically diverse seed sources available for many species of native grasses
Users of native grass seed in Canada

- Crown corporations, private companies
- Reclamation companies
- Conservation organizations
 a) Eg. Ducks Unlimited Canada (DUC)
- Livestock producers
Native Grasses: Constraints to wider use

- Lack of reliable sources of adapted seed
- Difficulty of seed production
- Expense of seed
Methodology

- DUC biologists collected seeds or plants across a range of adaptation of species
- Seeds or plants delivered to AAFC or universities
- Plants propagated and field nurseries established
- Evaluation for several years and limited selection carried out
 - Wanted to maintain high genetic diversity
- Basic seed stocks produced (G0)
- Seed increased under Canadian pedigreed seed production system
 - Two generations of increase (G1 and G2)
 - Standards for purity and germination
Roles of partners

- DUC
 a) Establish priority species for conservation
 b) Collect plants or seeds of these species in native stands

- AAFC and universities
 a) Propagate, select and produce basic seed
Pre-variety germplasm or ecovar™

- “native plant material derived from a composite of germplasm collected throughout the area of adaptation and that contains the natural genetic diversity of the species”
- Ecovar (i.e. ecological variety) is a trademarked term of Ducks Unlimited Canada
- Are “multi-site composites”
- Not as highly selected as a cultivar so less uniform
Species for which pre-variety germplasm is available

- Western wheatgrass WR Poole
- Northern wheatgrass AC Polar
- Green needlegrass AC Mallard
- Needle and thread grass AC Sharptail
- Awned wheatgrass AC Sprig & Pintail
- Little bluestem Taylor
- Nodding brome AC Marten
Awned wheatgrass seed production field
Meadow Brome

Richardsons Brome

10-14 days later

Smooth brome

B. Coulman
Species Under Development

- Program lead M. Schellenberg
 AAFC Swift Current
- Northern Wheatgrass
- Side-oats Grama
- Prairie Sandreed
- Purple Prairie Clover
- White Prairie Clover
- Nuttall’s salt meadow grass
Nuttall’s Salt Meadow Grass
Classes of pedigreed grass seed

- Standards and procedures under supervision of Canadian Seed Growers’ Association
- Cultivars (require registration by CFIA):
 - Breeder - produced by plant breeder
 - Foundation - grown from breeder seed by seed grower
 - Certified - grown from foundation seed by seed grower
 - Is seed of commerce – sold to farmers for forage production
- Pre-Variety Germplasm (no registration):
 - G0 – produced by plant breeder
 - G1 – grown from G0 seed by seed grower
 - G2 – grown from G1 seed by seed grower
 - G3 – grown from G2 seed by seed grower
Questions

- How do the various types of native grass populations compare in genetic diversity?
- Is there genetic drift or loss of genetic variation over generations of seed increase?

- Studies of genetic variation of several grass species were conducted using molecular markers (AFLP)
 a) Random assessment of variation across the genome
Why do we want high genetic variation?

• Will allow established populations to be adapted to a wide range of environmental conditions
 • Some genotypes will survive, others will not
• Potentially greater adaptation to climate change
Genetic diversity of blue grama (*Bouteloua gracilis*)

- Cross-pollinating species

- Four populations compared

 a) An ecovar (pre-variety germplasm), G0, G1 and G2

 b) Two ecotypes – Minnesota and South Dakota

 c) A native seed collection – southern Manitoba

- Greatest AFLP variation in the ecovar

- No genetic drift or loss in genetic variation in the ecovar across two seed multiplication generations

Genetic diversity of awned wheatgrass (*Elymus trachycaulus subsp subsecundus*)

- A self-pollinating species
- Two populations
 - AC Pintail ecovar - a multisite composite – G0, G1 and G2
 - AEC Hillcrest – a cultivar
- AC Pintail showed much higher AFLP variation than AEC Hillcrest
- AC Pintail lost 8% of original variation over two seed multiplications, but was still highly variable
Genetic Diversity Studies on Native Grass Populations from Manitoba and Saskatchewan

• Big bluestem – 6 populations
 • Within populations – 91% of variance; Among – 9%
 • Association of AFLP variation with geographic distance – i.e. the more distant collections more genetically different
• Nuttall’s salt meadow grass – 24 collections
 • Within populations – 96% of variation; Among – 4%
 • No association of variation with geographic distance
• Plain’s rough fescue – 6 populations
 • Within population – 90% of variation; Among – 10%
 • Association of variation with geographic distance -
Implications of Genetic Diversity Studies on Cross-Pollinating Native Grasses

- Ecovars more genetically variable than other available populations
 - Expected because of broad range of collections
- Little loss of genetic variation over seed increase generations
 - Ecovar commercial seed contains most of original variation
- All native seed collections have a large reservoir of genetic variation
- In Nuttall’s salt meadow grass, an ecovar of a few collections may capture the total variation
- For rough fescue and little bluestem, more collections across the range would be required to capture the total variation in an ecovar.
Acknowledgements

- Native Plant Solutions – DUC
- Beef Cattle Research Council
- Dr. Yong-Bi Fu
- Technical Staff
- Graduate Students